Backcalculation of Non-Linear Pavement Moduli Using Finite-Element Based Neuro-Genetic Hybrid Optimization

نویسنده

  • Kasthurirangan Gopalakrishnan
چکیده

The determination of pavement layer stiffness is an essential step in evaluating the performance of existing road pavements and in conducting pavement design and analysis using mechanistic approaches. Over the years, several methodologies involving static, dynamic, and adaptive processes have been developed and proposed for obtaining in-situ pavement layer moduli from Falling Weight Deflectometer (FWD) test deflection data through inverse analysis and parameter identification routines. In this paper, a novel pavement analysis toolbox combining the strengths of Finite Element (FE) modeling, Neural Networks (NNs), and Genetic Algorithms (GAs) is described. The developed user-friendly automated pavement evaluation toolbox, referred to as Neuro-Genetic Optimization Toolbox (NGOT) can be used on a real-time basis for accurate and rapid transportation infrastructure evaluation. It is shown that the developed toolbox backcalculates non-linear pavement layer moduli from actual field data with better accuracy compared to regression and conventional backcalculation approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive neuro-fuzzy inference system-based backcalculation approach to airport pavement structural analysis

This paper describes the application of adaptive neuro-fuzzy inference system (ANFIS) methodology for the backcalculation of airport flexible pavement layer moduli. The proposed ANFIS-based backcalculation approach employs a hybrid learning procedure to construct a non-linear input-output mapping based on qualitative aspects of human knowledge and pavement engineering experience incorporated in...

متن کامل

Rapid Finite-Element Based Airport Pavement Moduli Solutions using Neural Networks

This paper describes the use of artificial neural networks (ANN) for predicting non-linear layer moduli of flexible airfield pavements subjected to new generation aircraft (NGA) loading, based on the deflection profiles obtained from Heavy Weight Deflectometer (HWD) test data. The HWD test is one of the most widely used tests for routinely assessing the structural integrity of airport pavements...

متن کامل

Rigid Pavement Backcalculation Using Differential Evolution

The backcalculation of pavement layer moduli from Falling Weight Deflectometer (FWD) measured surface deflections is a challenging task. It can also be formulated as a global optimization problem with the objective of finding the optimal pavement layer moduli values that minimize the error between measured and computed surface deflections. Over the years, several backcalculation methodologies h...

متن کامل

Backcalculation of Airport Flexible Pavement Non-Linear Moduli Using Artificial Neural Networks

The Heavy Weight Deflectometer (HWD) test is one of the most widely used tests for assessing the structural integrity of airport pavements in a non-destructive manner. The elastic moduli of the individual pavement layers “backcalculated” from the HWD deflection measurements are effective indicators of layer condition. Most of the backcalculation programs that are currently in use do not account...

متن کامل

Knowledge discovery and data mining in pavement inverse analysis

This paper describes the use of data mining tools for predicting the non-linear layer moduli of asphalt road pavement structures based on the deflection profiles obtained from non-destructive deflection testing. The deflected shape of the pavement under vehicular loading is predominantly a function of the thickness of the pavement layers, the moduli of individual layers, and the magnitude of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009